Phone: Fax: Email: +61 (0) 402 731 563 +61 (8) 9457 8642 info@lifetime-reliability.com www.lifetime-reliability.com ## Mapping and Planning Your Maintenance Management and Reliability Improvement Journey When done well your maintenance strategies and practices deliver the six purposes of maintenance – equipment reliability, failure avoidance, defect elimination, least operating costs, risk reduction and maximum production. Fail to achieve one of them and your maintenance efforts will not get the big pay-offs that they should. There are modern understandings, systems and tools you need to know and use to move toward world-class maintenance results. The table below provides guidance for developing your plans and strategies in adopting the leading-edge and the best classic strategies that make equipment run stoppage-free for longer; deliver assets that produce at maximum sustainable capacity with first-pass quality throughput, and make industrial operations highly profitable. Understanding how you intentionally make your business processes and production equipment more and more reliable turns average organisations into world-class organisations. Use the table as a means to gauge where your operation is currently at and what more it can do to move towards world class maintenance performance. Some companies are now developing competencies for the operators for "Fitness to Operate" and for their maintainers "Fitness to Maintain". These will require, for example, that maintainers have a knowledge of the processes that the equipment they care for is working in. Similarly, Operators will have to have a knowledge of the maintenance requirements and strategies of the equipment they use in their processes. No longer is the philosophy 'trained once, trained for life' acceptable, as it used to be, for example for someone having completed an apprenticeship. The application of higher skills and the thrust for excellence is acknowledged as critical in the elimination of operational equipment failures and in the move toward equipment reliability with extended MTBF, resulting in higher plant availability or uptime. All managers and employees need to adopt a wider perspective that looks at the greater picture of a business and its operation, especially the interaction of the equipments" component parts across their life cycle so the operation can gain a greater benefits from use of best practice operational asset management. It means teaching your people how to integrate their business systems so there is a freedom of movement of information. It means teaching them that with this wider perspective a new and more powerful strategic vision becomes a possibility. Once there is a strategic vision that everyone understands there will be no holding them back from turning your business into a world class operation. Use the **Journey to Reliability and Maintenance Mastery** table over the page to decide just how far you want to take your company and its people. My best regards to you, Mike Sondalini www.lifetime-reliability.com | The Journey to Reliability and Maintenance Mastery | | | | | | | | | | | |--|---|---|---|--|---|---|--|--|--|---| | | Leadership and Capability | | | | | Systems and Processes | | | | | | | Maintenance
Vision & Strategy | Performance
Measures | Organization
Structure | Human
Resources | Knowledge
Base | Maintenance
Strategy | Stores and
Materials
Management | Planning &
Scheduling | Contractor
Management | Reliability
Improvement | | Mastery | Quality System managed Accuracy Controlled Enterprise where everyone in every department works to 3T error prevention procedures; Lean philosophies improve processes | Business strategy
focus; Maximising
Life Cycle Profit;
Defect And Failure
True (DAFT) Cost
database | Integrated cross-
functional teams
incorporating
financial,
engineering,
operations and
maintenance | Empowered,
flexible, cross-
functional teams
of experts
working to
scientific
discipline | Continually
learning, pushing-
out the boundaries
of human
knowledge and
understanding, Six
Sigma discipline is
normal | Precision Domain drives all engineering, installation, operations and maintenance work; Risk analysis and management normal | Materials problems
designed-out, OEM
monitors real-time
information on critical
parts' condition and
carries necessary
spares | Maintenance reducing as continual improvements extend time between outages; continually reducing time to repair with Lean philosophies | Small teams of experts servicing entire local industry delivering precision maintenance and design-out maintenance with profit sharing | Reliability growth pervades thinking. 'Design and Operations Cost Total Optimized Risk' (DOCTOR) is used to minimise all operating risks throughout the facility's life. | | Excellence | Personnel action plans;
appraisals are clearly tied
to the maintenance
strategy | On-going
benchmarking of
metrics and
processes; Full
cost database | Total Productive Maintenance where operators drive reliability, fault-find and maintain equipment; root cause failure analysis by operators and maintainers | Empowered,
flexible, world-
class workers;
self-managed
teams | Expert systems
used; fully
integrated CMMS
common database | Preventive & Predictive plans continuously optimized; the 'right' maintenance tactic is applied based on analysis | Stores system integrated to CMMS and accounting system; bar coding or radio frequency tags of all stores items; World-class Stores Management | >90% all
maintenance is
planned and >95%
first-times schedule
compliance; rolling
schedule fixed for
the week ahead | Small numbers of
contractors on long
term sharing
partnership
agreements with high
innovativeness | Risk and unplanned
failure reduced to best
in industry by reliability
analysis and modelling.
Reliability Growth
Cause Analysis
(RGCA) applied during
project design | | Competence | Reliability focused
Maintenance improvement
action plan is linked to the
maintenance
Management Strategy | Statistical process
control applied to
maintenance
process measures;
Equipment specific
maintenance costs
available | Established teams
for achieving key
objectives in the
Maintenance
Management
Strategy | Multi-skilled
trades with
process
capability
analysis and
basic operating
skills | Easy access to
knowledge bases
available to all
employees at all
times | Preventive & Predictive plans exist for all maintainable items; emphasis on PdM. All tactics understood | Single source
supplier partnerships
established and
effective; Area stores
with visual controls;
Reliability of spares
maintained;
Suppliers provide
technical expertise | Long term asset
planning established;
Critical path analysis
used for all rebuilds
and shutdowns | Contractors are
established based on
principle of 'risk
sharing'; Contractors
provide technical
expertise | Effective Root Cause
Analysis (RCA) applied
to equipment problems
to extend life | | Understanding | A clear Maintenance
vision and strategy is
documented and
communicated to all
employees | Input – Output
process measures
reviewed and
displayed;
Downtime by
cause; Segregated
maintenance costs
reviewed | Decentralized with
central support;
Clearly written,
mandates/roles for
each maintenance
function and group | Trades have problem identification and solving; team dynamics and training skills | Document control
system
established;
CMMS installed
and used to
manage
knowledge bases | Preventive & Predictive plans exist for key equipment; Compliance to scheduled plan is more than 95% | Spares classified with separate strategies; Spares linked to BOMs/Equipment Drawings; Standardization polices exist; ABC spares management with 'A' spares protected | All but unexpected
failures planned; All
planned jobs specify
safety, labour,
materials, tools,
technical details | All contractors
repairing rotables are
capable of Original
Equipment
Manufacturer's
testing | Basic equipment
conditions established;
Good failure
databases; All major
failures investigated;
PMs modified based on
site experience | | Awareness | No clearly documented
role of maintenance; No
Maintenance vision or
strategy | Some downtime
records;
Maintenance costs
regularly available,
but not segregated
into area/line | Centralized
maintenance group
with alignment to
production; Team
approach to technical
problems | Trades have
OH&S and
maintenance
support
(inspection,
reporting) skills | Plant register established and useful data collected; central technical library; All drawings and equipment information identified | System to identify
all maintainable
items exists;
Emphasis on time-
based overhauls
and inspections | Stores catalogue
established;
Inventory accuracy
>95%; Goods
receiving practices
in-place | Work Request/Work
Order system
established; Major
rebuilds, shutdowns
fully planned and
programmed | Contractors used for peak loads and non-core maintenance work | Collect the failure data;
Equipment histories
occasionally reviewed
for failure analysis | | Innocence | The main role is to fix it when it breaks/fails | Incomplete or no
maintenance
downtime records;
Maintenance costs
not readily
available | Centralized
maintenance group
with no alignment to
production;
Command and
Control' approach | Trades have their basic trade skills, however little or no technical knowledge or support and training given | Ad-hoc records
kept for
purchasing; No
plant register or
control of drawings | "If it ain't broke
don't fix it'; Annual
shutdown and
inspections only | Ad-hoc stores; No costing or control of spares | No planning function;
planning done on-
the-run; Short term
focus | All maintenance
carried out by in-
house team, which
may include
individual contractors | No failure records | ## **Tailor Your Maintenance Training Program to Teach the Best Practices Your People Need to Know** You need to be proactive at getting positive action and real change happening in the workplace that truly helps your business improve and innovate. Do training so that improvements are driven from the top and the respective levels in the business each contribute with appropriate skills and knowledge. Create a maintenance training strategy that fits your operational reliability improvement vision by building a training matrix with the necessary content in each module to give people at all levels in the company the detailed knowledge and practical experience they must have. An example of a training strategy focused intentionally at developing the right knowledge, skills and understanding where it is required in a company is shown in the matrix below. | | Trades | Supervision Levels | Planners | Managers | |-------------------------|--|---|--|---| | OUTCOME | Know and use the specific skills that maximise equipment uptime and workplace efficiencies | Know and use the specific principles and practices used in the workplace to maximise benefits from the workforce and equipment | Know and use the specific planning methods and practices that maximise equipment uptime and maximise tool-time of trades | Know and use the specific business process and systems that deliver value to the operation | | WORKING
KNOWLEDGE | Lubrication Roller and plain bearings Root cause failure removal | Lubrication management Machine vibration Reliability fundamentals Quality management | Preventive Maintenance Predictive Maintenance Balancing Maintenance Stores management Maintenance Planning systems and methods Maintenance Scheduling | Maintenance for profit High equipment reliability methods and practices Life cycle profit asset management Precision maintenance Quality management | | APPLIED
SKILLS | Precision alignment Creative disassembly Equipment condition inspection Roller bearing replacement Fastener tensioning | RCM/FMEARCA / 5 WhyMeeting management | RCM/FMEA MS Project SOP writing for high equipment reliability Meeting management | Meeting management | | INGRAINED
PRINCIPLES | Precision maintenance Production/Maintenance Partnership Lubrication management | Production/Maintenance
PartnershipReliability Engineering | Production/Maintenance
PartnershipReliability Engineering | Production/Maintenance
Partnership Reliability Engineering Lean process improvement | Use the 'Journey to Maintenance Management Mastery' table to identify the additional knowledge and capabilities needed in your business and then populate your maintenance training matrix so the right training is delivered to the right people. If you need people to deliver that training we at Lifetime Reliability Solutions (www.lifetime-reliability.com) can provide them and also tailor the training received by you people to fit the needs of your business and its plant and equipment.